

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

# CSC6203/CIE6021: Large Language Model

## Lecture 8: Multimodal LLMs

Winter 2023 Benyou Wang School of Data Science

# Recap

## Outline

- 1. Introduce multimodality
  - a. What is Multimodality?
  - b. Why is Multimodality?
  - c. Multimodal Challenges
- 2. Large Multimodal Models
  - a. CLIP: Contrastive Language-Image Pre-training
  - b. Flamingo: the dawns of LMMs
- 3. Leveraging LLMs for Multimodal Purposes
  - a. Multimodal in LLM era
  - b. Instruction Tuning in MultiModal LLM
  - c. Research Directions for Multimodal LMM
- 4. A case study to consider speech as the additional modality

- Let's start from the simplest concept.

## **Multimodal Behaviors and Signals**

### Language

- Lexicon
  - Words
- Syntax
  - Part-of-speech
  - Dependencies
- Pragmatics
  - Discourse acts

### Acoustic

- Prosody
  - Intonation
  - Voice quality
- Vocal expressions
  - Laughter, moans

### Visual

- Gestures
  - Head gestures
  - Eye gestures
  - Arm gestures
- Body language
  - Body posture
  - Proxemics
- Eye contact
  - Head gaze
  - Eye gaze
- Facial expressions
  - FACS action units
  - Smile, frowning

### Touch

- Haptics
- Motion

### **Physiological**

- Skin conductance
- Electrocardiogram

### Mobile

- GPS location
- Accelerometer
- Light sensors

### Definition

Modality refers to the way in which something expressed or perceived.



# multimodal adjective

mul·ti·mod·al (məl-tē-'mō-d<sup>ə</sup>l a) - tī-

having or involving several modes, modalities, or maxima
*multimodal* distributions
*multimodal* therapy



In our case, focusing on NLP: text + one or more other *modality* (images, speech, audio, olfaction, others). We'll mostly focus on images as the other modality.

A dictionary definition...

## Multimodal: with multiple modalities

A research-oriented definition...

# Multimodal is the scientific study of

heterogeneous and interconnected data Connected + Interacting

### **Heterogeneous Modalities**

### Heterogeneous: Diverse qualities, structures and representations.



### Abstract modalities are more likely to be homogeneous

## **Dimensions of Heterogeneity**







### Human processes multimodal infos simultaneously

Many use cases are impossible without multimodality, especially those in industries that deal with a mixture of data modalities such as healthcare, robotics, e-commerce, retail, gaming, etc.

used in healthcare. Image from

Multimodal biomedical AI



(2) Prompt:

Method

OSCAR

UFO mPLUG

SimVLM

LEMON

CoCa

GITn

GIT

#### Prompt:

Localize each person in the image using bounding box. What is the image size of the input image?



#### c s c s c s c s c s c s c s c s GPT-4V: 85.4 11.9 84.0 11.7 80.3 10.0 83.4 11.4 84.8 12.1 82.1 11.5 73.8 9.7 80.9 11.3 84.4 14.3 85.0 14.3 95.7 14.0 87.1 14.2 80.6 15.0 84.6 14.7 01.6 14.2 85.3 14.6

- 120.6 15.5

Test set

The image size of the input image is 1000 x 333 pixels

Bounding boxes for each person:

Person 1 (leftmost): (x1, y1) = (22, 108), (x2, y2) = (170, 300) Person 2: (x1, y1) = (200, 80), (x2, y2) = (290, 270) Person 3: (x1, y1) = (350, 70), (x2, y2) = (460, 280) Person 4: (x1, y1) = (540, 80), (x2, y2) = (640, 270) Person 5 (rightmost): (x1, y1) = (760, 100), (x2, y2) = (920, 290)

Note: These bounding box coordinates are approximate and may not be exact.

#### GPT-4V:

Describe the pointed region in the image. Validataion set

near. out.

100.7 13.8 97.7 13.5 89.6 12.5 96.6 13.4

107.7 14.9 107.8 14.5 102.5 13.7 106.9 14.4

- - - - 122.4 15.5

The highlighted red region in the image is a table cell that contains a numerical value of 122.3. It is located in the "Test set" section of the table, under the "out" column and the "GIT2" row. This value represents the overall performance metric for the GIT2 method on the test set, in the "out" category.

overall in. near. out. overall

92.2 12.9 87.8 12.6 87.5 11.5 88.3 12.4 89.0 12.9 87.8 12.6 80.1 11.1 86.6 12.4 103.7 13.7 95.6 13.4 83.8 11.9 94.3 13.1 98.0 13.6 95.2 13.4 78.0 11.5 92.5 13.1  $\begin{smallmatrix} 1039 & 145 & 965 & 138 & 835 & 123 & 943 & 136 & 989 & 143 & 947 & 139 & 779 & 121 & 923 & 136 \\ \hline & & & & & & & & & & & & & \\ 1137 & & & & 1109 & & 1152 & & & & & & & & & \\ 1137 & & & & & & 1109 & & & & & & & & \\ 1157 & & & & & & & & & & & & & \\ 1157 & & & & & & & & & & & & & \\ 1157 & & & & & & & & & & & & \\ 1157 & & & & & & & & & & & & \\ 1157 & & & & & & & & & & & \\ 1157 & & & & & & & & & & & \\ 1157 & & & & & & & & & & \\ 1157 & & & & & & & & & & \\ 1157 & & & & & & & & & & \\ 1157 & & & & & & & & & & \\ 1157 & & & & & & & & & & \\ 1157 & & & & & & & & & \\ 1157 & & & & & & & & & \\ 1157 & & & & & & & & & \\ 1157 & & & & & & & & & \\ 1157 & & & & & & & & & \\ 1157 & & & & & & & & & \\ 1157 & & & & & & & & & \\ 1157 & & & & & & & & \\ 1157 & & & & & & & & \\ 1157 & & & & & & & & \\ 1157 & & & & & & & & \\ 1157 & & & & & & & & \\ 1157 & & & & & & & & \\ 1157 & & & & & & & & \\ 1157 & & & & & & & & \\ 1157 & & & & & & & & \\ 1157 & & & & & & & & \\ 1157 & & & & & & & & \\ 1157 & & & & & & & & \\ 1157 & & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & & \\ 1157 & & & & & & & & \\ 1157 & & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & & \\ 1157 & & & & & & \\ 1157 & & & & & & \\ 1157 & & & & & & \\ 115$ 

118.0 15.4 116.3 15.1 120.2 14.5 117.3 15.0 112.8 15.2 115.5 15.1 110.1 13.7 114.3 14.9 UniversalCap 123.2 15.0 121.5 15.3 123.4 14.4 122.1 15.0 118.9 15.4 120.6 15.3 114.3 14.1 119.3 15.1

> 129.8 16.3 124.1 16.0 127.1 15.7 125.5 16.0 122.4 16.2 123.9 16.0 122.0 15.7 123.4 15.9 126.9 16.1 125.8 16.2 130.6 15.8 126.9 16.1 124.2 16.4 125.5 16.1 122.3 15.6 124.8 16.1

## Visualization of Detected Bbox:

#### Prompt:

Which wisdom tooth is hardest to remove?



Note: Same query image as shown above, resized to save space

#### GPT-4V:

The lower wisdom teeth, especially those that are impacted, are typically considered the hardest to remove. This is because the lower lawbone is denser than the upper jawbone, and the impacted wisdom teeth may be more difficult to access. Additionally, the roots of the lower wisdom teeth are often longer and more curved than those of the upper wisdom teeth, making them more challenging to remove.



There are 7 apples in the image.

Some cool multimodal use cases from GPT-4V

A range of very good reasons:

- Faithfulness: Human experience is multimodal
- Practical: The internet & many applications are multimodal
- Data efficiency and availability:
  - Efficiency: Multimodal data is rich and "high bandwidth" (compared to language; quoting LeCun, "an imperfect, incomplete, and low-bandwidth serialization protocol for the internal data structures we call thoughts"), so better for learning?
  - Scaling: More data is better, and we're running out of high quality text data.

Multimodality is one of the main frontiers of the new foundation model revolution.



# Multimodal Challenges

### **Challenge 1: Representation**

**Definition:** Learning representations that reflect cross-modal interactions between individual elements, across different modalities

> This is a core building block for most multimodal modeling problems!

### Individual elements:



It can be seen as a "local" representation or representation using holistic features

### **Challenge 1: Representation**

**Definition:** Learning representations that reflect cross-modal interactions between individual elements, across different modalities



### **Challenge 2: Alignment**

**Definition:** Identifying and modeling cross-modal connections between all elements of multiple modalities, building from the data structure

> Most modalities have internal structure with multiple elements

### Elements with temporal structure:

Other structured examples:







### **Challenge 2: Alignment**

**Definition:** Identifying and modeling cross-modal connections between all elements of multiple modalities, building from the data structure

### Sub-challenges:





Discrete elements and connections

Continuous Alignment



Segmentation and continuous warping

Contextualized Representation



Alignment + representation

### **Challenge 3: Reasoning**

**Definition:** Combining knowledge, usually through multiple inferential steps, exploiting multimodal alignment and problem structure



### **Challenge 3: Reasoning**

**Definition:** Combining knowledge, usually through multiple inferential steps, exploiting multimodal alignment and problem structure



### **Challenge 4: Generation**

**Definition:** Learning a generative process to produce raw modalities that reflects cross-modal interactions, structure and coherence

Sub-challenges:



### **Challenge 5: Transference**

**Definition:** Transfer knowledge between modalities, usually to help the target modality which may be noisy or with limited resources



# Large Multimodal Models

— The age of the large model is upon us, so let's just skip the small model and leap directly into the large model era.

### Milestones

Given the existence of so many amazing multimodal systems, a challenge of writing this PPT is choosing which systems to focus on. Here, we will focus on two models: **CLIP (2021)** and **Flamingo (2022)** both for their significance as well as availability and clarity of public details.

- **CLIP** was the first model that could generalize to multiple image classification tasks with zero- and few-shot learning.
- **Flamingo** wasn't the first large multimodal model that could generate open-ended responses (Salesforce's BLIP came out 3 months prior). However, Flamingo's strong performance prompted some to consider it the GPT-3 moment in the multimodal domain.

<sup>• [</sup>CLIP] Learning Transferable Visual Models From Natural Language Supervision (OpenAI, 2021)

<sup>•</sup> Flamingo: a Visual Language Model for Few-Shot Learning (DeepMind, April 29, 2022)

# CLIP

# **Contrastive Language-Image Pre-training**

a good practice for alignment

### **CLIP: Contrastive Language-Image Pre-training**

→ CLIP leveraged **natural language** supervision and contrastive learning, which allowed CLIP to both scale up their data and make training more efficient. We'll go over why/how these two techniques work.

#### Food101

guacamole (90.1%) Ranked 1 out of 101 labels



| • a prioto or guacaniole, a type or rood.     |  |
|-----------------------------------------------|--|
| X a photo of <b>ceviche</b> , a type of food. |  |
| •                                             |  |
| × a photo of edamame, a type of food.         |  |
| •                                             |  |
| × a photo of tuna tartare, a type of food.    |  |
|                                               |  |
| V a photo of hummun a type of food            |  |

#### Youtube-BB

airplane, person (89.0%) Ranked 1 out of 23 labels

| and the set                                                                                                    | ✓ a photo of a <b>airplane</b> . |
|----------------------------------------------------------------------------------------------------------------|----------------------------------|
| the second s | × a photo of a <b>bird</b> .     |
| Jan Cont                                                                                                       | × a photo of a <b>bear</b> .     |
| 1                                                                                                              | × a photo of a giraffe.          |
|                                                                                                                | × a photo of a <b>car</b> .      |
|                                                                                                                |                                  |

Zero-shot image classification with CLIP

### **CLIP's high-level architecture**



CLIP's architecture. Both encoders and projection matrices are jointly trained together from scratch. The training goal is to maximize the similarity scores of the right (image, text) pairings while minimizing the similarity scores of the wrong pairings (contrastive learning).

### **Scalable Data**

For many years, image models were trained with manually annotated (image, text) datasets (e.g. ImageNet, MS COCO). This isn't scalable. Manual annotation is time-consuming and expensive.

The CLIP paper noted that none of the then-available (image, text) datasets was big and high quality enough. They created their own dataset – 400M (image, text) pairs – as follows.

- 1. Construct a list of 500,000 queries. Queries are common words, bigrams, and titles of popular Wikipedia articles.
- 2. Find images matching these queries (string and substring match). The paper mentioned this search did NOT happen on search engines but didn't specify where. My theory is that since OpenAI already scraped the entire Internet for their GPT models, they probably just queried their internal database.
- 3. Each image is paired with a text that co-occurs with it (e.g. captions, comments) instead of the query since queries are too short to be descriptive.

## Language model objective



If a classifier outputs only one class for each input, a language model outputs a sequence of classes. Each generated class is called a token. Each token is from a predetermined list, the vocabulary, of the language model.

٠

## **Contrastive objective (CLIP)**



Texts for an image is **diverse** 

While the language model objective allows for vastly more flexible outputs, CLIP authors noted this objective made the training difficult. They hypothesized that this is because the model tries to generate exactly the text accompanying each image, while many possible texts can accompany an image: alt-text, caption, comments, etc.

### **Contrastive objective (CLIP)**

Contrastive learning is to overcome this challenge. Instead of predicting the exact text of each image, CLIP was trained to predict whether a text is more likely to accompany an image than other texts.

For each batch of N (image, text) pairs, the model generates N text embeddings and N image embeddings.

- Let  $V_1, V_2, \ldots, V_n$  be the embeddings for the N images.
- Let  $L_1, L_2, \ldots, L_n$  be the embeddings for the N texts.

CLIP computes the cosine similarity scores of the N<sup>2</sup> possible (V<sub>i</sub>, L<sub>j</sub>) pairings. The model is trained to maximize the similarity scores of the N correct pairings while minimizing the scores of the N<sup>2</sup> – N incorrect pairings. For CLIP, N = 32,768.

### **CLIP**



(2) Create dataset classifier from label text

Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the target dataset's classes.

### **CLIP applications: classification**

Today, for many image classification tasks, CLIP is still a strong out-of-the-box baseline to be used as-is or fine-tuned.



٠
### **CLIP applications: text-based image retrieval**

#### Text-based image retrieval

Since CLIP's training process was conceptually similar to image-to-text retrieval and text-to-image retrieval, CLIP "*displays significant promise for widely-applicable tasks like image retrieval or search*." However, "*on image retrieval, CLIP's performance relative to the overall state of the art is noticeably lower*."

There are attempts to use CLIP for image retrieval. For example, clip-retrieval package works as follows:

- 1. Generate CLIP embeddings for all your images and store them in a vector database.
- 2. For each text query, generate a CLIP embedding for this text.
- 3. Query in the vector database for all images whose embeddings are close to this text query embedding.

### **CLIP applications: image generation**



• [CLIP] Learning Transferable Visual Models From Natural Language Supervision (OpenAI, 2021)

https://tryolabs.com/blog/2022/08/31/from-dalle-to-stable-diffusion?utm\_source=blog&utm\_medium=edgeAlalliance&utm\_campaign=edgeAlalliance&utm\_id=edgeAlalliance

# Flamingo, the dawns of LMMs

a good practice for fine-grained alignment

### Flamingo: the dawns of LMMs (多模态大模型的曙光)

In a reductive view, Flamingo = CLIP + An autoregressive language model

- Adding a decoder LM. Unlike CLIP, Flamingo can generate text responses.
- Attention interaction between image encoder and LM



Flamingo can generate text responses conditioned on both text and images

Flamingo: a Visual Language Model for Few-Shot Learning (DeepMind, April 29, 2022)

٠

### Flamingo's high-level architecture



Figure 3: **Flamingo architecture overview.** Flamingo is a family of visual language models (VLMs) that take as input visual data interleaved with text and produce free-form text as output.

At a high level, Flamingo consists of **2 parts**:

- Vision encoder: a CLIP-like model is trained using contrastive learning. The text encoder of this model is then discarded. The vision encoder is frozen to be used in the main model.
- Language model: Flamingo finetunes Chinchilla to generate text tokens, conditioned on visuals and text, using language model loss, with two additional components Perceiver Resampler and GATED XATTN-DENSE layers.
- Flamingo: a Visual Language Model for Few-Shot Learning (DeepMind, April 29, 2022)

#### Data

Flamingo used 4 datasets: 2 (image, text) pair datasets, 1 (video, text) pair dataset, and 1 interleaved image and text dataset.





A kid doing a kickflip. Welcome to my website!

Image-Text Pairs dataset Video-Text Pairs dataset

Multi-Modal Massive Web (M3W) dataset

This is a

picture of

my dog.

This is a

picture of

my cat.

. .

| Dataset | Туре                                     | Size                | How                                                                                                                                           | Weight |
|---------|------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------|
| M3W     | Interleaved<br>image and text<br>dataset | 43M<br>webpages     | For each webpage, they sample a random<br>subsequence of 256 tokens and take up to<br>the first 5 images included in the sampled<br>sequence. | 1.0    |
| ALIGN   | (Image, text)<br>pairs                   | 1.8B pairs          | Texts are alt-texts, averaging 12 tokens/text.                                                                                                | 0.2    |
| LTIP    | (Image, text)<br>pairs                   | 312M pairs          | Texts are long descriptions, averaging 20.5 tokens/text.                                                                                      | 0.2    |
| VTP     | (Video, text)<br>pairs                   | 27M short<br>videos | ~22 seconds/video on average                                                                                                                  | 0.03   |

• Flamingo: a Visual Language Model for Few-Shot Learning (DeepMind, April 29, 2022)

#### Flamingo's vision encoder

Flamingo first trains a CLIP-like model from scratch using contrastive learning. This component only uses the 2 (image, text) pair datasets, ALIGN and LTIP, totaling 2.1M (image, text) pairs. This is 5x larger than the dataset CLIP was trained on.

- For the text encoder, Flamingo uses BERT instead of GPT-2.
- For the vision encoder, Flamingo uses a NormalizerFree ResNet (NFNet) F6 model.
- Text and vision embeddings are meanpooled before being projected to the joint embedding space.

#### Flamingo's language model

Flamingo uses Chinchilla as their language model. More specifically, they freeze the 9 pretrained Chinchilla LM layers. A traditional language model predicts the next text token based on the preceding text tokens. Flamingo predicts the next text token based on both the preceding text and visual tokens.



#### **Perceiver Resampler**

As the visual inputs can be both images and videos, the vision encoder can produce a variable number of image or video features. Perceiver Resampler converts these variable features into a consistent 64 visual outputs.



#### **GATED XATTN-DENSE layers**

GATED XATTN-DENSE layers are inserted between existing and frozen LM layers to allow the language model to attend more efficiently to the visual tokens when generating text tokens. Without these layers, Flamingo authors noted a drop of 4.2% in the overall score.



Figure 4: GATED XATTN-DENSE layers. To condition the LM on visual inputs, we insert new cross-attention layers between existing pretrained and frozen LM layers. The keys and values in these layers are obtained from the vision features while the queries are derived from the language inputs. They are followed by dense feed-forward layers. These layers are *gated* so that the LM is kept intact at initialization for improved stability and performance.

#### **Loss function**

Flamingo computes the likelihood of text y conditioned on the interleaved images and videos X.

$$p(y|x) = \prod_{l=1}^{N} p(y_l|y_{< l}, x_{\le l})$$

The training loss function was a weighted sum of expected negative log-likelihoods of generated text across all 4 datasets, with  $\lambda_m$  being the training weight of dataset m.

$$\sum_{m=1}^{M} \lambda_m E_{(x,y) \sim D_m} [-\sum_{l=1}^{L} \log p(y|x)]$$

Flamingo: a Visual Language Model for Few-Shot Learning (DeepMind, April 29, 2022)

### **Flamingo Training**

While Flamingo isn't open-sourced, there are many open-source replications of Flamingo.

- IDEFICS (HuggingFace)
- mlfoundations/open\_flamingo

• Flamingo: a Visual Language Model for Few-Shot Learning (DeepMind, April 29, 2022)

### **CLIP vs. Flamingo**

|                                          |                   | CLIP (2021)                                                                                                                                                                                                                                       | Flamingo (2022)                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Data                                     |                   | <ul> <li>WIT (WebImageText): 400M<br/>(image, text) pairs scraped from<br/>the Internet.</li> <li>500K queries<br/>Up to 20K (image, text) per query</li> </ul>                                                                                   | <ul> <li>4 datasets:</li> <li>ALIGN: 1.8B (image, text) pairs. Avg. 12 tokens/text.</li> <li>LTIP (Long Text &amp; Image Pairs): 312M pairs. Avg.</li> <li>20.5 tokens/text.</li> <li>VTP (Video &amp; Text Pairs): 27M (short video, text) pairs. Avg. 22 seconds/video.</li> <li>M3W (MultiModal MassiveWeb): 43M webpages with interleaved images and text. Up to 256 tokens and 5 images per page.</li> </ul>                    |  |
| Natural<br>language                      | Text<br>encoder   | CBOW or <b>text transformer</b> (a smaller version of GPT-2)                                                                                                                                                                                      | BERT. It's only used to train the vision encoder and discarded after.                                                                                                                                                                                                                                                                                                                                                                |  |
| supervisi<br>on for<br>vision<br>encoder | Vision<br>encoder | ResNet or Vision Transformer<br>(ViT)                                                                                                                                                                                                             | NormalizerFree ResNet (NFNet). Once trained, it's frozen before being used in Flamingo's main model.                                                                                                                                                                                                                                                                                                                                 |  |
|                                          | Training          | <ul> <li>Text and image embeddings<br/>are projected into a common<br/>multimodal embedding space<br/>using linear projections</li> <li>Text and image encoders are<br/>jointly trained from scratch using<br/>contrastive objectives.</li> </ul> | Same contrastive objectives as CLIP                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Language model                           |                   | x                                                                                                                                                                                                                                                 | <ul> <li>Chinchilla (9 layers)</li> <li>Perceiver Resampler maps from varying-sized visual features to a fixed number of visual tokens (64).</li> <li>GATED XATTN-DENSE layers are inserted between Chinchilla LM layers to allow the LM to attend to visual tokens when generating text tokens.</li> <li>Chinchilla is pretrained and frozen. Perceiver Resampler and GATED XATTN-DENSE layers are trained from scratch.</li> </ul> |  |

## Leveraging LLMs for Multimodal Purposes

- Welcome to the Era of Large Language Models.

# Multimodality in LLM era

(Large) language models really improve the **cognition**-level abilities, but it also needs **perceive** data from many other modalities.

#### The Era of Large Language Models (LLMs)



| Model Name  | Year | # Parameters |
|-------------|------|--------------|
| ТО          | 2021 | 11B          |
| LaMDA       | 2021 | 137B         |
| InstructGPT | 2022 | 175B         |
| GPT-NeoX    | 2022 | 20B          |
| OPT         | 2022 | 175B         |
| PaLM        | 2022 | 540B         |
| GLM-130B    | 2022 | 130B         |
| BLOOM       | 2022 | 176B         |
| Galactica   | 2022 | 120B         |
| ChatGPT     | 2022 | 1760B        |

## **Multimodal LLMs**



Visual chat with LMM. Generated by LLaVA: https://llava-vl.github.io/

#### Multimodal LLMs is hot right now

## Language Is Not All You Need: Aligning Perception with Language Models

Shaohan Huang, Li Dong, Wenhui Wang, Yaru Hao, Saksham Singhal, Shuming Ma<sup>\*</sup> Tengchao Lv, Lei Cui, Owais Khan Mohammed, Qiang Liu, Kriti Aggarwal, Zewen Chi Johan Bjorck, Vishrav Chaudhary, Subhojit Som, Xia Song, Furu Wei<sup>†</sup> Microsoft

### **GPT-4V**

- Model Details: Unknown
- Capability: Strong zero-shot visual understanding & reasoning on many user-oriented tasks in the wild
- How can we build Multimodal GPT-4 like models?



Source: https://www.barnorama.com/wp-content/uploads/2016/12/03-Confusing-Pictures.jpg

GPT-4 The unusual thing about this image is that a man is ironing clothes on an ironing board attached to the roof of a moving taxi.



#### GPT-4 visual input example, Chicken Nugget Map:

User Can you explain this meme?

Sometimes I just look at pictures of the earth from space and I marvel at how beautiful it all is.



GPT-4 This meme is a joke that combines two unrelated things: pictures of the earth from space and chicken nuggets.

The text of the meme suggests that the image below is a beautiful picture of the earth from space. However, the image is actually of chicken nuggets arranged to vaguely resemble a map of the world.

The humor in this meme comes from the unexpected juxtaposition of the text and the image. The text sets up an expectation of a majestic image of the earth, but the image is actually something mundane and silly.

#### GPT-4 Technical Report, OpenAI

#### **Recap on Language Modeling**



# Instruction Tuning in MultiModal LLM

#### **Instruction Tuning in LLM**



- Task instructions are implicit.
- Individual models are trained, or multi-tasking without specifying the instructions
- Hard to generalize to new tasks in zero-shot

### **Instruction Tuning in LLM**



### **Instruction Tuning in LLM**

|                                            | LLaMA | Alpaca  | Vicuna                      | GPT4-Alpaca          | <br>Tulu          |
|--------------------------------------------|-------|---------|-----------------------------|----------------------|-------------------|
| Data Source                                |       | GPT-3.5 | ShareGPT<br>(Human & GPT)   | GPT-4<br>(text-only) | <br>Mixed<br>Data |
| Instruction-<br>following<br>Data (#Turns) | None  | 52K     | 500K<br>(~150K conversions) | 52K                  |                   |

Self-Instruct with Strong Teacher LLMs & Mixed Human Data

### **Instruction Tuning in Multimodal LLM**

Visual Instruction Tuning with GPT-4

https://llava-vl.github.io/

Haotian Liu\*, Chunyuan Li\*, Qingyang WuYong Jae Lee (\* Equal contribution)

#### Self-Instruct with Strong Teacher LLMs



#### But No Teacher is available on multiGPT4?



 158K multimodal instruction following data (First & High Quality)



#### **GPT-assisted Visual Instruction Data Generation**

- Rich Symbolic Representations of Images
- In-context-learning with a few manual examples
  - $\rightarrow$  Text-only GPT-4

#### **Context type 1: Captions**

A group of people standing outside of a black vehicle with various luggage. Luggage surrounds a vehicle in an underground parking area

People try to fit all of their luggage in an SUV.

The sport utility vehicle is parked in the public garage, being packed for a trip Some people with luggage near a van that is transporting it.

#### **Context type 2: Boxes**

person: [0.681, 0.242, 0.774, 0.694], person: [0.63, 0.222, 0.686, 0.516], person: [0.444, 0.233, 0.487, 0.34], backpack: [0.384, 0.696, 0.485, 0.914], backpack: [0.755, 0.413, 0.846, 0.692], suitcase: [0.758, 0.413, 0.845, 0.69], suitcase: [0.1, 0.497, 0.173, 0.579], bicycle: [0.282, 0.363, 0.327, 0.442], car: [0.786, 0.25, 0.848, 0.322], car: [0.783, 0.27, 0.827, 0.335], car: [0.86, 0.254, 0.891, 0.3], car: [0.261, 0.101, 0.787, 0.626]



### LLaVA: Large Language-and-Vision Assistant



#### □ Two-stage Training

#### •Stage 1: Pre-training for Feature Alignment.

Only the projection matrix is updated, based on a subset of CC3M.

•Stage 2: Fine-tuning End-to-End. Both the projection matrix and LLM are updated

•Visual Chat: Our generated multimodal instruction data for daily user-oriented applications.

•Science QA: Multimodal reasoning dataset for the science domain.

#### Visual Chat: Towards building multimodal GPT-4 level chatbot



An evaluation dataset with 30 unseen images, 90 new language-image instructions

Overall, LLaVA achieves 85.1% relative score compared with GPT-4

### Science QA: New SoTA with the synergy of LLaVA with GPT-4

- LLaVA alones achieve 90.92%
- We use the text-only GPT-4 as the juedge, to predict the final answer based on its own previous answers and the LLaVA answers.
- This ``GPT-4 as juedge" scheme yields a new SOTA92.53%
- GPT-4 is an effective model ensemble method



### **Other Multimodal LLMs: Qwen-VL**



Figure 3: The training pipeline of the Qwen-VL series.

#### **Other Multimodal LLMs: CogVLM-Chat**



pretrained v11 and mapped into the same space as the text features. (b) The Transformer block in the language model. The image features have a different QKV matrix and FFN. Only the purple parts are trainable.

### **Other Multimodal LLMs: Fuyu**



Are we close or surpassing GPT-4? In terms of prototyping new capabilities

A large gap remains... In terms of scaling the capability GPT-4 has Strong abilities in

- Reading multiple high-resolution images, long sequence
- Responding with domain knowledge



GPT-4 The InstructGPT paper focuses on training large language models to follow instructions with human feedback. The authors note that making language models larger doesn't inherently make them better at following a user's intent. Large models can generate outputs that are untrutiful, toxic, or simply unhelpful.

> To address this issue, the authors fine-tune language models on a wide range of tasks using human feedback. They start with a set of labeler-written prompts and responses, then collect a dataset of labeler demonstrations of the desired model behavior. They fine-tune GPT-3 using supervised learning and then use reinforcement learning from human feedback to further fine-tune the model. The resulting model, called InstructGPT, shows improvements in truthfulness and reductions in toxic output generation while having minimal performance regressions on public NLP datasets.

> The authors conclude that fine-tuning with human feedback is a promising direction for aligning language models with human intent.

- User Could you explain the process described in Figure 2?
- GPT-4 Figure 2 in the InstructGPT paper illustrates the three steps of their method:

 Supervised fine-tuning (SFT): They collect demonstration data, which consists of labeler-written prompts and desired output behavior. This data is used to fine-tune GPT-3 with supervised learning.

 Reward model (RM) training: They collect comparison data, where a labeler ranks the outputs from several model samples (from best to worst). This data is used to train the reward model.

3. Reinforcement learning using Proximal Policy Optimization (PPO): They optimize a policy against the reward model using reinforcement learning. For each new prompt sampled from the dataset, the policy generates an output. The reward model calculates a reward for the output, and the reward is used to update the policy using the PPO algorithm.

These three steps are iteratively performed to train the InstructGPT model, which aims to generate outputs that align better with human preferences and follow instructions more effectively.

#### GPT-4 visual input example, École Polytechnique Exam Question:

User Answer question I.1.a. Think step-by-step.

#### I. Principe de la détection de rayonnement avec un bolomètre

Comma illustria cue la figure 1 un bolondere sei constitui d'un alsochere qui reçoit la repubmentar que l'or devis d'alsoc est populature 7, requestria misione, con summi a l'arian d'un intermandire incorporé, constitui d'un matériau conductore dont la résistance R(T) varie avec la transparature T; cette variation cet caractèrisé par le coefficient a  $-\frac{1}{R}\frac{dT}{dT}$ . L'ensemble possède la coquérit l'arminger  $\zeta_{ab}$ .

Un barrous, randucteur thremique, homogène, de longueur I, de section S et de ranductivité thermique  $\lambda$  et sous échanges thermiques latéraux, celle le belomètre à un thermostat de température  $T_A$  faux.



L1. Dans estis première partie, on étudie le comportement du bolomètre en règime stationnelle, à la température de fonctionneure  $T=T_0.$ 

L1.a) Expénser la température T(x) en tout point du borreau conducteur repéré par son abscisse x ; un prendux  $T(0)=T_0$  et  $T(L)=T_0$ 

GPT-4 To answer question 1.1.a, we need to express the temperature T(x) in every point of the conductive bar, which is characterized by the abscissa x. We are given that T(0) = T0 and T(L) = Tb.

For a stationary regime, the heat equation for the one-dimensional heat conduction in the bar is:  $d^2T/d\sigma^2=0$ 

Integrating once, we get:  $dT/dx = C_1$ 

Integrating a second time:  $T(x) = C_1 x + C_2$ 

To determine the constants  $C_1$  and  $C_2$ , we use the boundary conditions: T(0) = T0, which gives  $C_2 = T0$ T(L) = Tb, which gives  $C_1 = (Tb - T0)/L$ 

Finally, the expression for T(x) is: T(x) = (Tb - T0) \* (x/L) + T0This represents a linear temperature profile along the conductive bar, with a slope of (Tb - T0)/L.

Table 15. Example prompt demonstrating GPT-4's visual input capability. The prompt consists of a question which requires understanding a physics problem with a diagram written in French and solving it using chain-of-thought prompting.

### However, we're still striving to pursuit it

#### **MLLM-Bench**

Evaluating Multi-modal LLMs using GPT-4V with more comprehensive questions <u>https://github.com/FreedomIntelligence/MLLM-Bench</u>

#### **Distilling GPT-4V in a effective way**

Annealing strategy using a dynamic combination of caption and visual instructions. (In coming)

## **MMLM-Bench**

Table 6: Averaged scoring ratio on each level. Orders are sorted by overall averaged scoring ratios. Remembering Understanding Applying Analyzing Evaluating Creating Avg Model II aVA --1

| LLavA-v1.5   | 0.63 | 0.77 | 0.65 | 0.09 | 0.85 | 0.85 | 0.71 |
|--------------|------|------|------|------|------|------|------|
| Qwen-VL-Chat | 0.65 | 0.77 | 0.68 | 0.61 | 0.83 | 0.80 | 0.70 |
| LVIS         | 0.61 | 0.75 | 0.65 | 0.63 | 0.82 | 0.77 | 0.69 |
| mPLUG-Owl2   | 0.58 | 0.73 | 0.61 | 0.61 | 0.78 | 0.80 | 0.67 |
| CogVLM-Chat  | 0.59 | 0.74 | 0.62 | 0.59 | 0.78 | 0.72 | 0.66 |
| IDEFICS-9B   | 0.34 | 0.58 | 0.49 | 0.50 | 0.57 | 0.63 | 0.53 |
| MiniGPT-v2   | 0.44 | 0.54 | 0.44 | 0.50 | 0.65 | 0.71 | 0.52 |
| InstructBLIP | 0.45 | 0.57 | 0.37 | 0.43 | 0.57 | 0.39 | 0.47 |
| Fuyu-8B      | 0.39 | 0.55 | 0.33 | 0.38 | 0.52 | 0.42 | 0.43 |
| SEED-LLaMA   | 0.39 | 0.43 | 0.42 | 0.40 | 0.48 | 0.51 | 0.43 |
| kosmos-2     | 0.38 | 0.53 | 0.41 | 0.38 | 0.43 | 0.36 | 0.42 |
# Multimodal LLMs using complex instructions

#### • Objective: best open-source MutItimodal LLMs in the world

- The simper the architecture (e.g. Fuyu) is the better
- Using complex instructions.
- I earn from GPT-4\/



We could use GPT-4V APIs!

# Research Directions for Multimodal LMMs

#### **MultiModal In-Context Learning**

- Otter: A Multi-Modal Model with In-Context Instruction Tuning
- M3IT: A Large-Scale Dataset towards Multi-Modal Multilingual Instruction Tuning
- MetaVL: Transferring In-Context Learning Ability From Language Models to Vision-Language Models



#### Adapters for more efficient multimodal training

- LLaMA-Adapter V2: Parameter-Efficient Visual Instruction Model
- Cheap and Quick: Efficient Vision-Language Instruction Tuning for Large Language Models



LLaMA-Adapter V2: 14M parameters



• QLoRA: Efficient Finetuning of Quantized LLMs

Finetuning 65B LLaMA for 24 hours on a single GPU, reaching 99.3% of the performance level of ChatGPT

#### Multimodal systems for instruction-following

- MultiInstruct: Improving Multi-Modal Zero-Shot Learning via Instruction Tuning (Xu et al., Dec 2022)
- LLaVA: Visual Instruction Tuning (Liu et al., Apr 28, 2023)
- InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning (Salesforce, May 11, 2023)
- LaVIN: Cheap and Quick: Efficient Vision-Language Instruction Tuning for Large Language Models (Luo et al., May 24, 2023)

| What is the weather<br>in the image now?                                                                                                                                                                                                                                                                                                                                   | If it rains now, will the man get wet?                                                                                                                                                                                                                                                                                                                                                                                         | What is the baby<br>doing in the image?                                                                                                                                                                                                                                                                                                                                                            | What color is the baby's clothes?                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LaVIN (ours)<br>The weather in the image<br>appears to be sunny, as the man<br>is holding a baby in his arms<br>outside, and there are no<br>visible signs of rain or storrmy<br>conditions. The presence of a<br>horse in the scene suggests that<br>the location might be a farm or<br>a rural area, where sunny<br>weather is more common.                              | LaVIN (ours)<br>: Yes, if it rains now, the man<br>will get wet. In the image, the<br>man is holding a baby and<br>petting a brown horse, and they<br>are both standing under an<br>overhang. If it starts raining,<br>the overhang will not provide<br>complete protection from the<br>rain, and the man will get wet<br>as he continues to interact<br>with the horse and the baby.<br><u>GPT4 Score: 8</u><br>CPT4 Score: 8 | LaVIN (ours)<br>The the image, the baby is<br>being held by a man, who is<br>also holding a horse's nose.<br>The baby is reaching out to<br>touch the horse's nose,<br>likely experiencing the<br>horse for the first time.<br>This interaction between the<br>baby and the horse creates a<br>moment of connection and<br>curiosity for the child.<br>GPT4 Score: 9<br>BELEP2: Petting the horse. | LaVIN (ours)<br>: The baby's clothes are<br>white. In the image, the<br>man is holding the baby<br>while the horse is nuzzling<br>the baby's face. The baby<br>is wearing a white onesie,<br>which stands out against<br>the man's brown shirt<br>and the horse's color.<br>GPT4 Score: 9<br>BLIP2 : Blue.<br>GPT5 Score: 2 |
| GPT4 Score: 9                                                                                                                                                                                                                                                                                                                                                              | 1 TT - 1/4                                                                                                                                                                                                                                                                                                                                                                                                                     | vi II aVA                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                             |
| BLIP2: It is a sunny day.<br>GPT4 Score: 7                                                                                                                                                                                                                                                                                                                                 | No, the man will not get wet if<br>it starts raining, as he is already                                                                                                                                                                                                                                                                                                                                                         | : The baby is touching the<br>horse, reaching out to pet                                                                                                                                                                                                                                                                                                                                           | LLaVA<br>: The baby is wearing<br>white clothes.                                                                                                                                                                                                                                                                            |
| tLaVA:<br>The weather in the image is<br>sunny.                                                                                                                                                                                                                                                                                                                            | The stable provides shelter<br>from the rain, keeping both<br>the man and the horse dry.                                                                                                                                                                                                                                                                                                                                       | it while being held by the man.                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                             |
| GPT4 Score: 7                                                                                                                                                                                                                                                                                                                                                              | GPT4 Score: 7                                                                                                                                                                                                                                                                                                                                                                                                                  | GPT4 Score: 8                                                                                                                                                                                                                                                                                                                                                                                      | GPT4 Score: 7                                                                                                                                                                                                                                                                                                               |
| MiniGPT4<br>It is not possible to determine<br>the current weather in the<br>location depicted in the image,<br>sa the image does not provide<br>any information about the<br>weather conditions. The image<br>shows a man, a baby, and<br>horse standing in front of<br>building with a thatched roof,<br>but it does not provide any<br>information about the weather or | MintGPT4<br>:It is not possible to determine<br>whether the man in the image<br>would get wei if it starts raining,<br>as the image does not provide<br>any information about the<br>environment in the area. The<br>image shows a man bolding a<br>baby, but it does not provide any<br>information about the weather or<br>the environment in the area.                                                                      | MiniGPT4<br>in the image, the baby is<br>reaching out to touch the<br>horse's nose. The baby is<br>standing next to the horse,<br>and the baby is reaching out<br>with one hand to touch the<br>horse's nose. The baby is<br>smilling and seems to be<br>enjoying the interaction<br>with the horse.                                                                                               | MiniGPT4<br>The baby in the image is<br>not wearing any clothes.                                                                                                                                                                                                                                                            |
| GPT4 Score: 4                                                                                                                                                                                                                                                                                                                                                              | GPT4 Score: 5                                                                                                                                                                                                                                                                                                                                                                                                                  | GPT4 Score: 9                                                                                                                                                                                                                                                                                                                                                                                      | GPT4 Score: 2                                                                                                                                                                                                                                                                                                               |

#### Multitask Instruct with Established Academic Datasets/Tasks

- MultiInstruct: Improving Multi-Modal Zero-Shot Learning via Instruction Tuning
- mPlug-Owl: Modularization empowers large language models with multimodality
- InstructBLIP: Towards general-purpose vision-language models with instruction tuning
- Multimodal-gpt: A vision and language model for dialogue with humans
- Instruction-ViT: Multi-Modal Prompts for Instruction Learning in ViT

Two existing purposes for Instruct Tuning:

- User-oriented tasks: Daily conversation
- Academic tasks: Existing datasets



#### **Generating multimodal outputs**

Generating Images with Multimodal Language Models (Koh et al., Jun 2023) is an awesome paper that shows how LMMs can generate and retrieve images together with generating texts.



Figure 1: Our model is capable of generating text, retrieving images, generating novel images, and interleaving results into coherent multimodal dialogue.

#### Applications

- PathAsst: Redefining Pathology through Generative Foundation AI Assistant for Pathology
- PMC-VQA: Visual Instruction Tuning for Medical Visual Question Answering
- LLaVA-Med: Training a Large Language-and-Vision Assistant for Biomedicine in One Day





#### **Evaluations**

- Evaluating Object Hallucination in Large Vision-Language Models
- On Evaluating Adversarial Robustness of Large Vision-Language Models
- On the Hidden Mystery of OCR in Large Multimodal Models
- LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset, Framework, and Benchmark



| C                            | DCR   | OCR + Reasoning |  |
|------------------------------|-------|-----------------|--|
| BLIP-2 OPT <sub>6.7b</sub>   | 62.12 | 7.31            |  |
| BLIP-2 FlanT5 <sub>XXL</sub> | 63.74 | 13.59           |  |
| OpenFlamingo                 | 56.68 | 11.28           |  |
| LLaVA                        | 53.30 | 10.37           |  |
| MiniGPT4                     | 40.12 | 7.82            |  |
| mPLUG-Owl                    | 61.79 | 16.03           |  |
| Supervised-SoTA              | 84.83 | 72.75           |  |

14 tasks: 10 tasks:



#### Incorporating more data modalities

Today, most multimodal systems work with text and images. It's only a matter of time before we need systems that can incorporate other modalities such as videos, music, and 3D. Wouldn't it be amazing to have one shared embedding space for ALL data modalities?



**Figure 1. IMAGEBIND's joint embedding space enables novel multimodal capabilities.** By aligning six modalities' embedding into a common space, IMAGEBIND enables: 1) Cross-Modal Retrieval, which shows *emergent* alignment of modalities such as audio, depth or text, that aren't observed together. 2) Adding embeddings from different modalities naturally composes their semantics. And 3) Audio-to-Image generation, by using our audio embeddings with a pre-trained DALLE-2 [61] decoder designed to work with CLIP text embeddings.

SpeechGPT A pipeline solution: SpokenGPT

# Pipeline solution: SpokenGPT + TTS

- ChatGPT output too long responses
- In a spoken scenario, we prefer shorter responses

- Some improvements
  - enhancing emotion
  - with accent, pause,
  - character enhancement
  - with high EQ (emotional intelligence)

#### **Speech-enhanced Response**

#### • Some improvements

- enhancing emotion
- o with accent, pause (重音和停顿)
- o character enhancement

#### Q: 我肚子痛怎么办?

#### GPT-4:

#### ChatGPT

肚子痛可能由多种原因引起,如消化不良、食物中毒、胃肠炎等。这里有一些一般性的建议,但清 记住,如果疼痛严重或持续,最好咨询医生。

- 1. 休息: 轻度的肚子痛通常可以通过休息得到缓解。
- 2. 喝水:保持水分,但避免酒精和含咖啡因的饮料,它们可能刺激胃部。
- 3. 温敷: 使用温水袋或热敷袋轻轻放在肚子上可以缓解疼痛。
- 4. 轻食: 如果感到饥饿, 尝试吃一些温和的食物, 如白米饭、馒头或煮熟的蔬菜。
- 5. 避免重食:暂时避免油腻、辛辣或难以消化的食物。
- 6. 药物:对于轻微的疼痛,可以考虑使用非处方的止痛药,如扑热息痛或布洛芬。但请按照说明使用,并注意不要过量。

如果疼痛非常严重,持续时间较长,或者伴随有发烧、呕吐、腹泻等其他症状,应该及时就医。特 别是如果疼痛突然且剧烈,或者感觉像是最严重的疼痛之一,这可能是紧急情况,应该立即就医。

- Q:我肚子痛怎么办?
- GPT-4:

<del>(友好、关心的语气)</del>哎呀,肚子痛可真不舒服。首先呢<del>,(轻声、慢速)</del>尽量放松, 找个地方躺下休息一下。

<del>(轻松、温和的语气)</del>喝点水吧,保持水分很重要。但是呢, (<del>稍微快一点的语速)</del>别喝咖啡或者酒,这些可能会让胃更不舒服。

- <del>(细心、缓慢的语气)</del>你可以试试用热水袋轻轻放在肚子上,这样有时候会感觉好一些。 (简单、清晰的语气)饿了的话<del>,(稍微强调)</del>吃点容易消化的东西,比如白饭或者煮 熟的蔬菜,避免油腻或辛辣的食物。
- <del>(关切、严肃的语气)</del>最后啊<del>,(稍微停顿)</del>如果疼痛很严重,或者有其他症状,比如 发烧、呕吐,那就(<del>强调、加快语速)</del>一定要去看医生了。别拖着,安全最重要!

#### SpeechGPT implementations

#### prompt

使用自然、对话式的语言,清晰易懂(简短的句子,简单的词语)。

要简洁明了,与问题相关:大部分回答应该只有一 两个句子,除非要求进一步深入。

不要独占对话。使用衔接词来提高理解,不要使用 列表格式。保持对话流畅。

澄清问题:如果有歧义,请提出澄清问题,而不是 做出假设。不要暗示或明确试图结束对话(例如, 不要以"回头聊!"或"享受!"结束回答)。

有时用户可能只是想聊天。问一些相关的后续问题。不要问他们是否还需要帮助(例如,不要说"我可以再帮您做些什么?"之类的话)。

请记住,这是一个语音对话:不要使用列表、 markdown、圆点符号或其他通常不会被口头表达 的格式。

用文字写出数字(例如,"二零一二年"而不是2012 年)。

如果有些话不合理,很可能是因为你听错了。这不 是一个拼写错误,用户也没有发音错误。

#### Training

Step 1: rephrase existing response by LLMs/expert and Step 2 re-train or continue training it

# EQGPT

- How to generate responses with high EQ?
- Benchmark, training and beyond.

SpeechGPT A end-2-end solution: SpokenGPT

# Solution: SpeechGPT



Dong Zhang and Shimin Li and Xin Zhang and Jun Zhan and Pengyu Wang and Yaqian Zhou and Xipeng Qiu. SpeechGPT: Empowering Large Language Models with Intrinsic Cross-Modal Conversational Abilities. https://github.com/0nutation/SpeechGPT

#### The existing protocol: speech tokenizer



## A simper protocol: linear projection



# What are missing

- Benchmark
- Dataset
- First-tier open-sourced models

# Benchmark for Speech LLM

- Single modality
  - o audio2audio
  - text2text
- Cross modality
  - o audio2text
  - text2audio
- Hybrid
  - hyribd2text
  - hyribd2autio
  - text2hyribd
  - o autio2hybrid
  - hybrid2hybrid

# Text2audio tasks

- How does the dog bark?
- How to pronounce "bingo"?
- Read "China No. 1" aloud with in Trump's voice

# Hybrid2text Tasks

- How many people are recording below?
- Take out what the man said
- Who was the first person to speak?
- Say a string of numbers backwards
- What is the sentiment of the following audio?
- Transcribe what Trump said (Trump and Biden debate)

• What is the difference in emotion between the following two audios?







# hybrid2audio

- Swap the voices of the two people below
- Replace Trump's voice with Obama's
- Replace the following sentence with another emotion
- Say the following sentence in a sarcastic way
- Correct my pronunciation





## Benchmark

- Human evaluation
- A good speech language model could a be evaluator by itself
  - <Input, ouput1, ouput2>, ouput1 and output2 which one is better



#### Speech Flan

Synthesize these data based on the defined scenarios

## Extension: Long-context Speech language model

Audio in one second would be tokenized into 32-64 tokens! The sequence would be super long!

## Scaling text-speech data up

# Speech-text training w/t paired data

Masked language model





Speech token

textual token

# Speech, vision and Language, 3 in 1



Paired data is sparse!

- How to get the missing modality
  - Synthesis
  - **RAG**

#### Speech-text training w/o paired data

Masked language model



## Synthetic paired data

Input : Pure text think therefore I am



Input : Pure speech

## Synthetic paired data

Input : Pure text



# RAG for 3 in 1



#### RAG


## **Emerging Topics**



## Thanks

## Acknowledgement

- https://huyenchip.com/2023/10/10/multimodal.html
- <u>https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models</u>
- <u>https://arxiv.org/pdf/2306.14895.pdf</u>
- <u>https://web.stanford.edu/class/cs224n/</u>
- http://www.boyangli.org/slides/Multimodal+LLM-UBC-June-26-2023.pdf
- https://huyenchip.com/2023/10/10/multimodal.html
- <u>https://cmu-multicomp-lab.github.io/mmml-tutorial/icml2023/</u>